jaram

Format: Online  ISSN 1942-9649

Series Solution of Fuzzy Differential Equations under Strongly Generalized Differentiability
Omar Abu Arqub
Volume 5, Issue 1, 2013    Pages  31 - 52
Received   19 May 2012,   Accepted   07 October 2012
Abstract.  In this article, series solution of fuzzy differential equations under strongly generalized differentiability is introduced. The new approach provides the solution in the form of a rapidly convergent series with easily computable components using symbolic computation software. The proposed method obtains Taylor expansion of the solution of a parameterized system and reproduces the exact solution when the solution is polynomial. The proposed technique is applied to a few test examples to illustrate the accuracy, efficiency, and applicability of the method. The results reveal that the method is very effective, straightforward, and simple.
Keywords.  Taylor expansion; Fuzzy differential equations; Residual power series method.
DOI.  10.5373/jaram.1447.051912
Full Text:  PDF
References : 

[1] O. Abu Arqub. Numerical Solution of Fuzzy Differential Equation using Continuous Genetic Algorithms. PhD. Thesis,University of Jordan, Jordan, 2008.

[2] O. Abu Arqub, M. Al-Smadi, S. Momani. Application of reproducing kernel method for solving nonlinear Fredholm-Volterra integro-differential equations. Abstract and Applied Analysis 2012, Article ID 839836, 16 pages, 2012. View Full Text via CrossRef.

[3] O. Abu Arqup, A. El-Ajou. Solution ofthe fractional epidemic model by homotopy analysis method. Journal of King SaudUniversity (Science), 2013, 25(1): 73 81.

[4] T. Allahviranloo, S. Abbasbandy, N.Ahmady, E. Ahmady. Improved predictor-corrector method for solving fuzzyinitial value problems. Information Sciences, 2009, 179: 945 - 955.

[5] T. Allahviranloo, S. Abbasbandy, S.Salahshour , A. Hakimzadeh. A new method for solving fuzzy linear differentialequations. Computing, 2011, 92: 181 - 197.

[6] M. Al-Smadi, O. Abu Arqub, N.Shawagfeh. Approximate solution of BVPs for 4th-order IDEs by using RKHSmethod. Applied Mathematical Sciences, 2012, 6: 2453-2464.

[7] S. Barro, R. Mar´?n. Fuzzy Logic inMedicine. Heidelberg: Physica-Verlag, 2002.

[8] R.C. Bassanezi, L.C. de Barros, P.A.Tonelli. Attractors and asymptotic stability for fuzzy dynamical systems. FuzzySet Syst., 2000, 113: 473 - 483.

[9] B. Bede, S.G. Gal. Almost periodic fuzzy-number-valued functions. Fuzzy Set Syst., 2004, 147: 385 - 403.

[10] B. Bede, S.G. Gal. Generalizations of the differenti ability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Set Syst., 2005, 151: 581 - 599, View Full Text via CrossRef.

[11] B. Bede, I.J. Rudas, A.L. Bencsik.First order linear fuzzy differential equations under eneralizeddifferentiability. Information Sciences, 2007, 177: 1648 - 1662.

[12] A. Bencsik, B. Bede, J. Tar, J.Fodor. Fuzzy differential equations in modeling hydraulic ifferential servocylinders. In: Third Romanian-Hungarian joint symposium on applied omputationalintelligence (SACI). Timisoara, Romania, 2006.

[13] J.J. Buckley, T. Feuring. Fuzzydifferential equations. Fuzzy Set Syst., 2000, 110: 43 - 54.

[14] J. Casasnovas, F. Rossell. Averagingfuzzy biopolymers. Fuzzy Set Syst., 2005, 152: 139 -158.

[15] Y. Chalco-Cano, H. Rom´an-Flores. Onnew solutions of fuzzy differential equations. Chaos olitons Fract., 2008, 38:112 - 119.

[16] B.C. Chang, S.K. Halgamuge. Proteinmotif extraction with neuro-fuzzy optimization. ioinformatics, 2002, 18: 1084 -1090.

[17] P. Diamond, P. Kloeden. MetricSpaces of Fuzzy Sets: Theory and Applications. World scientific, Singapore,1994.

[18] A. El-Ajou, O. Abu Arqub, S. Momani.Homotopy analysis method for second-order boundary value problems ofintegro-differential equations. Discrete Dynamics in Nature and Society, 2012,Article ID 365792, 18 pages, 2012. View Full Text via CrossRef.

[19] M.S. El Naschie. A review ofE-infinite theory and the mass spectrum of high energy particle physics. ChaosSolitons Fract., 2004, 19: 209 - 236.

[20] R. Goetschel, W. Voxman. Topologicalproperties of fuzzy numbers. Fuzzy Set Syst., 1983, 10: 87 - 99.

[21] R. Goetschel, W. Voxman. Elementaryfuzzy calculus. Fuzzy Set Syst., 1986, 18: 31 - 43.

[22] M. Guo, X. Xue, R. Li. Impulsive functional differential inclusions and fuzzy population models. Fuzzy SetSyst., 2003, 138: 601 - 615, View Full Text via CrossRef.

[23] E. H¨ullermeier. An approach tomodelling and simulation of uncertain systems. International Journal ofUncertainty Fuzziness Knowledge-Based System, 1997, 5: 117 - 137.

[24] O. Kaleva. Fuzzy differentialequations. Fuzzy Set Syst., 1987, 24: 301 - 317.

[25] A. Khastan, F. Bahrami, K. Ivaz. NewResults on multiple solutions for Nth-order fuzzy differential equationsunder generalized differentiability. Boundary Value Problems, 2009, Article ID395714, 13 pages.

[26] V. Laksmikantham. Set differentialequations versus fuzzy differential equations. Appl. Math. Comput., 2004, 164:277 - 294.

[27] M. Ma, M. Friedman, A. Kandel.Numerical solution of fuzzy differential equations. FuzzySet Syst., 1999, 105:133 - 138.

[28] H.T. Nguyen. A note on the extensionprinciple for fuzzy set. Journal Mathematical Analysis and Applications, 1978,64: 369 - 380.

[29] M. Oberguggenberger, S. Pittschmann.Differential equations with fuzzy parameters. Math. Mod. Syst., 1999, 5: 181 -202.

[30] S.Ch. Palligkinis, G. Papageorgiou,I.Th. Famelis. Runge-Kutta methods for fuzzy differential equations. Appl.Math. Comput., 2009, 209: 97 - 105.

[31] M.L. Puri. Fuzzy random variables.Journal of Mathematical Analysis and Applications, 1986, 114: 409 - 422.

[32] M.L. Puri, D.A. Ralescu.Differentials of fuzzy functions. Journal of Mathematical Analysis andApplications, 1983, 91: 552 - 558.

[33] S. Seikkala. On the fuzzy initialvalue problem. Fuzzy Set Syst., 1987, 24: 319 - 330, doi:10.1016/0165-0114(87)90030-3.

[34] L. Wang, S. Guo. Adomian method forsecond-order fuzzy differential equation. World Academy of Science, Engineeringand Technology, 2011, 76: 979 - 982.